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Abstract

Polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, such as 

methylnaphthalenes (MeNs), are harmful pollutants ubiquitously present in the environment. 

Exposure to PAHs has been linked to a variety of adverse health effects and outcomes, including 

cancer. Alkyl PAHs have been proposed as petrogenic source indicators because of their relatively 

high abundance in unburned petroleum products. We report a method to quantify 11 urinary 

methyl naphthols (Me-OHNs), metabolites of 1- and 2-methylnaphthalenes, and 10 monohydroxy 

PAH metabolites (OH-PAHs), using automated liquid-liquid extraction and isotope dilution gas 

chromatography tandem mass spectrometry (GC-MS/MS). After spiking urine (1 mL) with 13C-

labeled internal standards, the conjugated target analytes were hydrolyzed enzymatically in the 

presence of ascorbic acid. Then, their free species were preconcentrated into 20% toluene in 

pentane, derivatized and quantified by GC-MS/MS. The 11 Me-OHNs eluted as 6 distinct 

chromatographic peaks, each representing 1–3 isomers. Method detection limits were 1.0–41 

pg/mL and the coefficients of variance in quality control materials were 4.7–19%. The method 

was used to analyze two National Institute of Standards and Technology’s Standard Reference 

Materials and samples from 30 smokers and 30 non-smokers. Geometric mean concentrations 

were on average 37 (Me-OHNs) and 9.0 (OH-PAHs) fold higher in smokers than in non-smokers. 

These findings support the usefulness of Me-OHNs as potential biomarkers of non-occupational 

exposure to MeNs and sources containing MeNs.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) and their alkylated derivatives, such as 

methylnaphthalenes (MeNs), are ubiquitous environmental pollutants [1–3] that come from 

two types of sources. Pyrogenic PAHs are formed through the incomplete combustion of 

organic materials, such as fossil fuel and biomass. At high combustion temperature, 

pyrogenic sources emit mainly un-substituted PAHs, while at lower temperature below 

approximately 700ºC – such as in tobacco smoking – a larger amount of alkyl PAHs, mainly 

methyl derivatives, are generated [4–6]. Petrogenic sources refer to unburned petroleum 

products, such as oil spills, leaks and road oil drip evaporation, and contain more alkylated 

PAHs than do pyrogenic sources [7–9]. The concentration ratio of alkyl PAHs to their un-

substituted homologues has been used as an indicator of unburned fossil fuel sources in the 

atmosphere, soil, and aquatic environments [7, 10–14].

MeNs and naphthalene are among the most abundant PAH congeners in polluted air such as 

urban, roadside and airport air [15–17], and biomass smoke [18], often at concentrations that 

far exceed those of less volatile PAHs, such as benzo[a]pyrene (BaP). Furthermore, MeNs 

are industrial chemicals used to make dyes, resins, and many other consumer products [19]. 

In 2010, 28 million cereal boxes were recalled in the United States after 2-MeN was 

suspected of leaching out of the packaging [20, 21]. This incident led to a public calling for 

additional research on MeNs, particularly to better understand their potential health effects.

Some PAHs and chemical mixtures containing PAHs, such as BaP, coal tar pitch, coke 

production, and chimney sweep soot, are classified as Group 1 human carcinogens by the 

International Agency for Research on Cancer [22]. Many other PAHs, including 

naphthalene, are probable or possible human carcinogens [23]. A recent study reported a 

dose-response relationship between urinary naphthalene metabolites and chromosomal 

aberrations – established markers of cancer risk – in school-age children [24]. In addition, 

PAHs have been linked to a variety of adverse health effects and outcomes [3]. While 

toxicities and health effects associated with exposure to un-substituted PAHs have been 

widely studied, such information is limited on MeNs [19, 25], even though the Agency for 

Toxic Substances & Disease Registry includes MeNs on its list of toxic substances [19]. A 

few animal studies on mice and in-vivo essays have indicated dose- and time-dependent 

lung toxicity after acute exposure to MeNs [26–32]; the severity of lung toxicity associated 

from 2-MeN exposure was similar to that from naphthalene and worse than that from 1-

MeN [27, 28, 33].

In children and the general population from various countries [34–38], and populations with 

high occupational exposure to PAHs [39, 40], exposure has been assessed by measuring 

their monohydroxlated metabolites (OH-PAHs) in urine, with 1-hydroxypyrene (1-PYR) 

being the most commonly used exposure biomarker [41–45]. To the best of our knowledge, 

no studies have reported measurements of MeNs metabolites in human samples.

We report the development and validation of a method to quantify 11 metabolites of 1-MeN 

(n=5) and 2-MeN (n=6), as well as 10 metabolites of 4 un-substituted PAHs, i.e. 

naphthalene (n=2), fluorene (n=3), phenanthrene (n=4), and pyrene (n=1), in human urine. 
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The method used enzymatic deconjugation, automated liquid-liquid extraction (LLE), and 

isotope dilution gas chromatography tandem mass spectrometry (GC-MS/MS). The method 

was then used to quantify PAH and MeN metabolites in urine specimens from smokers and 

non-smokers.

Methods and materials

Standards, chemicals and supplies

All reagents and solvents used were of the highest available grade or intended for pesticide 

residue analysis. Pentane and toluene (>99.8%) were obtained from Tedia Company Inc. 

(Fairfield, OH, USA). Sodium acetate anhydrous (>99.0%) was purchased from Fisher 

Scientific (Pittsburg, PA, USA), dodecane (99%), ascorbic acid, N-methyl-N-

(trimethylsilyl)-trifluoroacetamide (MSTFA), and β-glucuronidase type H-1 with sulfatase 

activity (β-glucuronidase ≥300,000 units/g, sulfatase ≥10,000 units/g), isolated from Helix 

pomatia, were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ultra-high purity 

nitrogen and helium were obtained from Airgas South Co. (Chamblee, GA, 

USA). 13C12-2,3,3′,4,4′-pentachlorobiphenyl (13C-PCB105) was purchased from Cambridge 

Isotope Laboratories (Andover, MA, USA). All native and 13C-labeled OH-PAH and Me-

OHN analytes, their abbreviations, together with their suppliers are listed in Table 1.

Stock solutions of individual OH-PAHs prepared from neat materials (ca. 1 mg/mL in 

acetonitrile) and purchased individual Me-OHN stock solutions (50 μg/mL in isooctane) 

were used to prepare standard mixtures for eight calibration standards at concentrations 

ranging from 1–1,000 pg/μL, except for 1- and 2-hydroxynaphthalene (1-NAP and 2-NAP) 

which were present at four times higher concentrations (4–4,000 pg/μL). The 13C-labeled 

spiking solution contained eleven 13C-labeled internal standards (13C-IS), i.e. 10 labeled 

OH-PAHs and 13C6-2-methyl-1-naphthol in acetonitrile (100 pg/μL for 13C-labeled 1- and 

2-NAP, 25 pg/μL for the remaining 13C-IS). The recovery standard solution contained 13C-

PCB105 (200 pg/μL in toluene).

Human urine samples

Two Standard Reference Materials (SRMs), SRM 3672 (Smoker urine) and SRM 3673 

(Non-smoker urine), were obtained from the U.S. National Institute of Standards and 

Technology (NIST). Thirty urine specimens collected from 30 self-identified smokers were 

purchased from Bioreclamation, LLC (NY, USA). Thirty non-smoker urine specimens were 

collected anonymously at the Centers for Disease Control and Prevention (CDC) through a 

convenience sampling of adult volunteers. All urine specimens were refrigerated upon 

collection, and stored at −70°C until use. CDC’s Human Subjects Institutional Review 

Board approved the anonymous collection of urine for method development and validation. 

A waiver of informed consent was requested under 45 CFR46.116(d).

Sample preparation procedure

Urine (1 mL) was fortified with 13C- IS mixture (40 μL) using a Gilson 215 liquid handler 

(Gilson Inc., Middleton, WI, USA). The weight of the vial containing the 13C- IS mixture 

was recorded before and after spiking of the sample run to calculate spiking accuracy for the 
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run. Then, the urine was spiked with sodium acetate buffer (pH 5.5, 1 M, 1 mL) containing 

β-glucuronidase/sulfatase (3000 unit β-glucuronidase and 100 unit sulfatase activity/mL 

buffer) and ascorbic acid solution (10 μL, 250 mg/mL). After overnight incubation at 37°C 

(~18 hours), the target analytes were extracted with a 20% toluene 80% pentane solvent mix 

(v/v) through automated LLE on a Gilson 215 liquid handler as described elsewhere [46]. In 

brief, de-ionized water (2 mL) and pentane/toluene mix (5 mL) were added to the urine and 

the samples were mixed by rotation for 5 min (20 rpm) using the automatic liquid handler. 

The procedure was paused and the samples were centrifuged for 20 min (2800 rpm). After 

the samples were returned to the liquid handler, the organic phase was transferred to 

collection tubes. This extraction procedure was repeated with additional pentane/toluene mix 

volume (5 mL). The combined pentane/toluene extracts were spiked with dodecane (10 μL) 

as a keeper, and concentrated on a RapidVap vacuum evaporator (Labconco Corporation, 

Kansas City, MO, USA), first at 40°C, 40% vortex speed and 500 mbar vacuum for 10 min 

to evaporate pentane, then at 70°C, 50% speed and 230 mbar to evaporate toluene until ~10 

μL remained (20 min). The concentrated extracts were reconstituted with toluene (20 μL), 

spiked with recovery standard solution 13C-PCB105 (10 μL), and transferred to GC vials 

with 300-μL inserts. The target analytes were derivatized to their trimethylsilyl derivatives 

by adding MSTFA (10 μL) and incubating at 60° for 30 min.

Isotope dilution GC-MS/MS

GC-MS/MS analysis was carried out on an Agilent 7000B triple quadrupole mass 

spectrometer, interfaced with a 7890A gas chromatograph (Agilent Technologies, Santa 

Clara, CA, USA), operating in the multiple reaction monitoring (MRM) mode using electron 

impact ionization. One microliter of the extract was injected in splitless mode using a liner 

packed with glass wool to minimize column contamination at an inlet temperature of 270ºC. 

The chromatographic separation was carried out on a Zebron ZB-5MS column (30 m × 0.25 

mm, 0.25 μm film thickness, Phenomenex Corp, Torrance, CA), under a constant flow of 1 

mL/min helium. The initial oven temperature was 95ºC (1 min), then ramped at 15ºC/min to 

195ºC, 2ºC/min to 205ºC and held for 3 min, and finally ramped at 40ºC/min to 320ºC and 

held for 3 min (total run time 22 min/sample). The transfer line and source temperatures 

were 270 ºC. In the triple quadrupole collision cell, helium was used as the quench gas at 

2.25 mL/min and nitrogen was the collision gas at 1.5 mL/min. The instrument sensitivity 

was checked daily by injecting the lowest calibration standard (1 pg injected on column for 

1-NAP and 2-NAP and 250 fg for the remaining analyte). For the daily instrument 

sensitivity check to pass, the signal-to-noise (S/N) ratio needed to be at a minimum of 10 for 

all analytes.

Table 1 lists the GC-MS/MS parameters, including precursor and product ions, collision 

energy and retention time, for all target analytes. Each of the 10 OH-PAH analytes is 

quantified with its corresponding 13C-IS. All Me-OHN metabolites were quantified 

with 13C6-2-methyl-1-naphthol (2M1N) as the internal standard. Identity of the Me-OHN 

peaks in urine samples was confirmed by the use of mass peak profiling [47] on a magnetic 

sector high-resolution mass spectrometer (MAT95XL, Thermo Fisher Scientific Inc. 

Waltham, MA, USA) at mass resolution of 10,000 (Supplementary Material, Accurate mass 

peak profiling for peak confirmation).
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Quality assurance and quality control

Anonymously collected urine was pooled, pressure-filtered through a 0.45–μm SuporCap–

100 Capsule (Pall Corp. Ann Arbor, MI, USA), diluted with de-ionized water (1 part water 

to 4 parts of filtered urine), and used as a starting pool to make quality control (QC) 

materials. This pool was then divided and spiked with a standard mixture containing the 

target analytes in acetonitrile at two different levels to create two QC pools: low QC (spiked 

with 200 pg/mL) and high QC (spiked with 700 pg/mL). The spiked urine pools were stirred 

at room temperature overnight, after which the QC materials were aliquoted into 16 ×100 

mm glass culture tubes, and stored at −70°C until use. Each QC pool was characterized by 

producing 30 analytical runs over a period of three months to determine the 95% and 99% 

control limits. A multi-rule QC system was adopted to monitor within- and between-run 

variability for each analytical run using replicates of the two QC pools per run [48]. The 

concentrations of the QCs in each run were evaluated using SAS 9.3 (SAS Institute Inc., 

Cary, NC, USA).

In this method, one analytical run is defined as 34 unknown urine samples, two water 

blanks, two low QCs, two high QCs and eight calibration standards which are derivatized 

and analyzed in parallel with the urine extracts. For each sample, analyte results were 

considered valid when fulfilling the following criteria: (i) relative retention time, defined as 

the retention time ratio of a native analyte over its 13C-IS, was within ± 0.25% of the 

reference ratio set by the average of the calibration standards, (ii) calculated recovery of the 

individual 13C-IS in the sample was within 25–150%, (iii) 13C-IS spiking accuracy for the 

run, defined as the actual weight of the 13C-IS spiking solution used divided by the 

theoretical weight of spiking solution required for the run, was within 90–110%, and (iv) the 

QCs in the run passed the multi-rule QC check as detailed elsewhere [48].

Results and discussion

We developed a method to quantify 11 hydroxylated metabolites of 1-MeN and 2-MeN, 

along with 10 OH-PAHs, metabolites of 4 un-substituted PAHs, in human urine using 

automated LLE and isotope dilution GC-MS/MS determination. To the best of our 

knowledge, this is the first report of an analytical method for measuring MeN metabolites in 

human urine and first report of their concentrations in urine samples. As expected, the Me-

OHNs eluted shortly after the naphthols and before the hydroxyfluorenes (Figure 1). 

Although analytically this method could measure five additional compounds (1-methyl-2-

naphthol, 2-methyl-1-naphthol, 8-methyl-1-naphthol, 9-hydroxyphenanthrene, 3-

hydroxyfluoranthene), as shown in Figure 1, these compounds were not reported because of 

their instability and unstable QC curves, which rendered them inadequate as exposure 

biomarkers.

GC-MS/MS of Me-OHNs

We evaluated several GC columns with various phase polarities from multiple manufactures 

for their separation capabilities. On a ZB-5MS 5% phenyl methyl silicone column, the 14 

Me-OHNs eluted as 8 distinct chromatographic peaks with each peak representing 1–3 

isomers (Figure 1). Columns with intermediate polarity, such as RTX®-440 and RTX®-50 
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(Restek, Bellefonte, PA, USA), gave similar separation as the non-polar ZB-5MS (data not 

shown). RTX®-2330 (Restek, Bellefonte, PA, USA), a polar column with its stationary 

phase consisting of 90% biscyanopropyl/10% cyanopropylphenyl polysiloxane, yielded the 

best separation in which the 14 Me-OHNs were eluted as 11 chromatographic peaks 

(Supplementary Material, Figure S1). However, when using this column, the analytes 

elution slowed down. To maintain the separation for the rest of the analytes, the GC program 

run time had to be increased to 40 min. This led to broadened peak shape and reduced 

sensitivity for the late eluting analytes such as 1-PYR. Therefore, we chose a ZB-5MS 

column and reported the combined concentration of co-eluting metabolites. Such combined 

concentrations should provide a better estimation of MeN exposure than individual 

concentrations because 1-MeN and 2-MeN are both present in pyrogenic and petrogenic 

sources and both lead to multiple metabolites. However, for certain applications, such as to 

assess accidental exposure to specific MeNs, the RTX-2330 column would provide a better 

separation of Me-OHN metabolites than the ZB-5MS column and thus facilitate the 

exposure assessment to 1-MeN or 2-MeN separately.

The mass spectrometer was at MRM mode. For most analytes, the molecular ion was chosen 

as the precursor ion, and M-30 (- 2[·CH3]), M-31 (- [·CH3 + CH4]) or M-89 (-OSiC3H9) 

were selected as the product ions (Table 1, Supplementary Material, Figure S2). During the 

method validation, a partially co-eluting interference affecting 4-hydroxyphenanthrene was 

present in certain urine samples. This interference was eliminated when using a different 

precursor-product ion pair, M-31 to M-46 (- [·CH3 + ·CH3 + CH4]), demonstrating the 

superior selectivity of MS/MS.

Enzymatic deconjugation

Like the OH-PAH metabolites [46], preliminary data suggest that the Me-OHNs are 

excreted in urine predominantly as conjugates (data not shown). However, the method can 

only quantify the de-conjugated metabolites because analytical standards are available for 

the hydroxyl metabolites, but not the conjugates. Therefore, it is essential to completely 

convert the conjugated metabolites to their free forms. This method used overnight 

hydrolysis of urine samples (1 mL) with 10 mg enzyme (3000 unit β-glucuronidase activity 

and 100 unit sulfatase activity) to reach complete deconjugation of all OH-PAHs [46]. This 

is consistent with the optimal condition (20,000 unit β-glucuronidase and 16 h hydrolysis for 

10 mL artificial urine fortified with 1-PYR glucoronide) for 100% deconjugation reported 

by Wegener et al. [49]. However, when we conducted deconjugation experiments on the 

Me-OHNs, concentrations of several Me-OHNs, such as 4-methyl-1-naphthol (4M1N), 

decreased up to 50% during the overnight hydrolysis (Figure 2). Potential explanations for 

such decrease include physical losses, such as those resulting from binding of the free 

species to the culture tube glass surface, or chemical changes, such as oxidation or 

photodegradation. After excluding glass binding and photodegradation (data not shown), we 

tested ascorbic acid as an antioxidant to prevent potential degradation by hydroxyl and 

superoxide radicals [50–52], and found that ascorbic acid effectively stabilized the Me-

OHNs during the hydrolysis process by preventing the oxidation of the deconjugated Me-

OHNs (Figure 2). We further determined 2.5 mg ascorbic acid per 1 mL urine as the 
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appropriate amount to ensure that all Me-OHNs were stable during the enzymatic 

hydrolysis.

Method improvement

In addition to the inclusion of Me-OHNs, the current method improved the quantification of 

urinary OH-PAHs, including 1-PYR, compared to the previous method [46]. First, the 

automated 13C-IS spiking improved accuracy and precision (data not shown), and eliminated 

potential human error in this critical step. The 13C-IS spiking accuracy was calculated and 

monitored as an additional quality assurance check for an analytical run. Second, the solvent 

selection choice maximized extraction efficiencies, reduced losses during samples 

preparation, and therefore, increased method recoveries. The recoveries were 52% and 53% 

for the two 13C-naphthols and 69–100% for the eight larger 13C-OH-PAH internal 

standards, compared to 46–72% in the previous method [46]. Third, the method incurred 

reduced cost and increased productivity by using a considerably cheaper and more robust 

instrumentation (MS/MS vs. high resolution mass spectrometry). Fourth, the method gave 

increased sensitivity of the OH-PAH analytes, as demonstrated by higher S/N ratios for the 

lowest standard (Supplementary Material, Figure S3). Finally, the presence of ascorbic acid 

facilitated the deconjugation of several OH-PAH conjugates, i.e., those of 1-naphthol and 9-

hydroxyfluorene [46]. The hydrolysis of these conjugates was inefficient compared to other 

OH-PAHs, potentially due to steric hindrance and higher composition of sulfate conjugate 

[46]. In addition, 9-FLU is an alcohol rather than a phenol, which might affect the 

deconjugation efficiency. The use of ascorbic acid increased the deconjugation speed, most 

likely by preventing the oxidative damage of β-glucuronidase and sulfatase [50], and thus 

reduced deconjugation time required to achieve maximal yield from overnight to 3 hour 

(Supplementary Material, Figure S4). All of these characteristics together are essential for 

conducting large epidemiological studies such as the National Health and Nutrition 

Examination Survey.

Our previous analytical method [46] targeted 24 urinary OH-PAHs, namely the 10 OH-

PAHs reported in this method and monohydroxyl derivatives of BaP, chrysene, 

benz(a)anthracene and benzo(c)phenanthrene, including 3-hydroxybenzo[a]pyrene (3-BaP, 

LOD: 2.6 ng/L), a metabolite of BaP [53]. However, these relatively large PAHs are mainly 

excreted through feces [3]. Therefore, their monohydroxyl metabolites may not be optimal 

exposure biomarkers as suggested by the rather infrequent detection of these compounds in 

the Canadian and US national surveys [36, 38] and in other studies [54, 55]. For example, 3-

BaP had a detection rate of 0% in all demographic groups in the Canadian Health Measures 

Survey (LOD: 2 ng/L) [38]. With a more sensitive method (LOD: 0.1 ng/L) [56], Lafontaine 

et al. detected 3-BaP in 18.5% of non-smokers and 66.7% of smokers (13–50 cigarettes/

day), and acknowledged nonetheless that the use of 3-BaP as PAH exposure biomarker was 

less justified [57]. To avoid miss-interpretation during exposure assessment, we 

discontinued the measurement of monohydroxyl derivatives of the larger PAHs, including 3-

BaP, and reported 10 detectable and stable urinary OH-PAHs, i.e. metabolites of 

naphthalene, fluorene, phenanthrene and pyrene, in this method and in all recent research 

projects [58, 59].
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Method evaluation and validation

The method detection limit (MDL) for this method was defined as 3 times of S0, where S0 is 

the standard deviation (SD) as the concentration approaches zero [60]. Because OH-PAHs 

and Me-OHNs are ubiquitous contaminants in urine, we spiked synthetic urine with 4 

different levels of standard mixtures (10, 20, 50 and 100 pg/mL; 40–400 pg/mL for 1- & 2-

NAP) and performed 6 repeated measurements to determine the SD at each level. The SD 

was then plotted as a function of concentration and S0 was extrapolated as the intercept of 

the regression line [60]. The method detection limits were 7.0–41 pg/mL for the Me-OHNs 

and 1.0–19 pg/mL for the OH-PAHs (Table 2).

The overall coefficients of variance (CVs) from 30 runs of QCL and QCH over a 3-month 

period, shown in Table 2, were 4.7–8.3% for most OH-PAHs, except for 3-

hydroxyphenanthrene (13%). As expected, the between-day variability is higher than the 

within-day variability. For the Me-OHNs, the CVs were 11–19%, higher than those of OH-

PAHs, likely because only one 13C-IS is available for the Me-OHNs.

The accuracy of the proposed method was evaluated in a 6-point matrix standard addition 

experiment. A urine pool was spiked with 10, 20, 50, 100, 500 and 1000 pg/mL of standards 

(four times higher spike for 1- and 2-NAP). The un-spiked and spiked urine pools were 

analyzed, each in six replicates. A linear regression analysis was carried out by plotting the 

measured concentrations against spiked concentrations to evaluate correlations and 

determine concentrations of analyte in the non-spiked urine sample. As shown in Table 2, 

the matrix-spiked samples gave good linearity for all compounds with correlation 

coefficients ranging 0.92–1.00. The intercept from the linear regression reflected 80–109% 

of the measured concentrations in the un-spiked urine pool and the differences were not 

statistically significant (alpha = 0.05), demonstrating a non-biased and accurate method.

The accuracy of this method was further evaluated through two NISTSRMs, namely SRM 

3672 (smoker urine) and SRM 3673 (non-smoker urine). As shown in Table 3, the results on 

OH-PAHs from this method were in good agreement with the certified concentrations (Draft 

Certificates of Analysis, internal communication with Dr. Michele Schantz, NIST) that 

spanned several orders of magnitude, further demonstrating the accuracy of the proposed 

method.

Analysis of smoker and non-smoker samples

Table 4 lists the geometric mean (GM) and selected percentile urinary concentrations in 30 

self-identified smokers and 30 non-smokers, as well as the OH-PAH concentrations in the 

general, non-smoking and smoking U.S. population [36]. As expected, OH-PAH 

concentrations were on average 9.0 (range: 3.9–25) fold higher in smokers than non-

smokers. For example, the GM concentrations of 1-PYR, the most commonly used PAH 

exposure biomarker, were 58 and 482 ng/L in the non-smoker and smoker samples, 

respectively, corresponding to 8.3 fold difference between these two groups. Me-OHNs 

were detected in 53–97% of non-smokers and 100% of smokers. As shown in Table 4, the 

geometric mean concentrations for Me-OHNs ranged from 34–453 pg/mL in the non-
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smokers to 1,608–6,990 pg/mL in the smokers, which corresponds to an average of 36.7 

(range: 9.9–61) fold difference.

Interestingly, the concentration differences between smokers and non-smokers of Me-OHNs 

are even higher than those of OH-PAHs, the commonly recognized PAH exposure 

biomarkers. In the 30 non-smokers, the GM urinary concentrations of MeN metabolites 

(sum of 11 Me-OHNs; 1.7 ng/mL) were lower than those of the naphthalene metabolites 

(sum of 1- and 2-naphthol; 5.8 ng/mL). In the 30 smokers, the GM concentrations of the 

metabolites from naphthalene and MeNs were comparable, at 33.7 and 33.4 ng/mL, 

respectively (Supplementary Material, Figure S5). Similarly, the Me-OHN concentrations 

were 10.9–30.0 times higher in the NIST smoker urine SRM than the non-smoker urine 

SRM, while for the OH-PAHs, the differences were smaller (0.2–11.0 fold). These results 

were consistent with the report that a higher amount of methyl PAHs, such as MeNs, were 

generated in tobacco smoking compared to other combustion sources [4, 5], and strongly 

suggested the utility of urinary Me-OHNs as biomarkers to assess human exposure to MeNs.

Conclusions

To the best of our knowledge, this is the first method reporting the concurrent measurement 

of 11 metabolites of MeNs and 10 metabolites of un-substituted PAHs in 1 mL of human 

urine with optimal precision, accuracy and sensitivity. The automated sample preparation 

permits robust operation and high throughput, essential for the analysis of samples in 

national surveys and other large epidemiological studies. We evaluated the usefulness of the 

method to assess exposure to PAHs by analyzing urine specimens from smokers and non-

smokers, two populations known to have different level of PAH exposure. It should be noted 

that many factors, such as urine dilution, demography, geography and timing of sample 

collection, can affect metabolite concentrations. Nonetheless, the magnitude of 

concentration differences between smokers and non-smokers, especially for Me-OHNs, 

strongly suggest the utility of these compounds as potential biomarkers for assessing 

exposure to PAHs, MeNs and related sources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Gas chromatograms of (A) a standard (1 pg injection on column for 1- and 2-NAP, 250 fg 

for other analytes), and urine extracts from a non-smoker (B) and a smoker urine sample 

(C). Peaks represent the trimethylsilyl ethers of OH-PAHs and Me-OHNs. Peaks marked 

with an asterisk are isomers that are not reported in this method. Calculated concentrations 

in urine samples (ng/mL) are given in parenthesis.
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Figure 2. 
Calculated concentrations of selected methyl naphthols in a smoker’s urine sample as a 

function of deconjugation time for 5 different amounts of ascorbic acid (AA, mg/mL urine)
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